Биология. Общая биология. Базовый уровень. 10 класс - Захарова Екатерина Тимофеевна (книги онлайн полные txt) 📗
Строение гена эукариот. В среднем на один ген в хромосоме человека приходится около 50 тыс. нуклеотидов. Существуют очень короткие гены. Например, белок энкефалин, который синтезируется в нейронах головного мозга и влияет на формирование наших положительных эмоций, состоит всего из 5 аминокислот. Следовательно, ген, отвечающий за его синтез, содержит всего около двух десятков нуклеотидов. А самый длинный ген, кодирующий один из мышечных белков, состоит из 2,5 млн нуклеотидов.
В геноме человека, так же как и у других млекопитающих, участки ДНК, кодирующие белки, составляют менее 5 % от всей длины хромосом. Остальную, большую часть ДНК раньше называли избыточной, но теперь стало ясно, что она выполняет очень важные регуляторные функции, определяя, в каких клетках и когда должны функционировать те или иные гены. У более просто организованных прокариотических организмов, геном которых представлен одной кольцевой молекулой ДНК, на кодирующую часть приходится до 90 % от всего генома.
Все десятки тысяч генов не работают одновременно в каждой клетке многоклеточного организма, этого не требуется. Существующая специализация между клетками определяется избирательным функционированием определённых генов. Мышечной клетке не надо синтезировать кератин, а нервной – мышечные белки. Хотя надо отметить, что существует довольно большая группа генов, которые работают практически постоянно во всех клетках. Это гены, в которых закодирована информация о белках, необходимых для осуществления жизненно важных функций клетки, таких как редупликация, транскрипция, синтез АТФ и многие другие.
В соответствии с современными научными представлениями ген эукариотических клеток, кодирующий определённый белок, всегда состоит из нескольких обязательных элементов. Как правило, в начале и в конце гена располагаются специальные регуляторные участки; они определяют, когда, при каких обстоятельствах и в каких тканях будет работать этот ген. Подобные регуляторные участки дополнительно могут находиться и вне гена, располагаясь достаточно далеко, но тем не менее активно участвуя в его управлении.
Кроме регуляторных зон существует структурная часть гена, которая, собственно, и содержит информацию о первичной структуре соответствующего белка. У большинства генов эукариот она существенно короче регуляторной зоны.
Взаимодействие генов. Необходимо отчётливо представлять себе, что работа одного гена не может осуществляться изолированно от всех остальных. Взаимовлияние генов многообразно, и в формировании большинства признаков организма обычно принимает участие не один и не два, а десятки разных генов, каждый из которых вносит свой определённый вклад в этот процесс.
По данным проекта «Геном человека», для нормального развития клетки гладкой мышечной ткани необходима слаженная работа 127 генов, а в формировании поперечно – полосатого мышечного волокна участвуют продукты 735 генов.
В качестве примера взаимодействия генов рассмотрим, как наследуется окраска цветка у некоторых растений. В клетках венчика душистого горошка синтезируется некое вещество, так называемый пропигмент, который под действием специального фермента может превратиться в антоциановый пигмент, вызывающий пурпурную окраску цветка. Значит, наличие окраски зависит от нормального функционирования по крайней мере двух генов, один из которых отвечает за синтез пропигмента, а другой – за синтез фермента (рис. 82). Нарушение в работе любого из этих генов приведёт к нарушению синтеза пигмента и, как следствие, к отсутствию окраски; при этом венчик цветков будет белый.
Рис. 82. Схема образования пигмента у душистого горошка
Иногда встречается и противоположная ситуация, когда один ген влияет на развитие нескольких признаков и свойств организма. Такое явление называют плейотропией или множественным действием гена. Как правило, такое действие вызывают гены, функционирование которых очень важно на ранних стадиях онтогенеза. У человека подобным примером может служить ген, участвующий в формировании соединительной ткани. Нарушение в его работе приводит к развитию сразу нескольких симптомов (синдром Марфана): длинные «паучьи» пальцы, очень высокий рост из-за сильного удлинения конечностей, высокая подвижность суставов, нарушение структуры хрусталика и аневризма (выпячивание стенки) аорты.
Вопросы для повторения и задания
1. Что такое геном? Выберите самостоятельно критерии сравнения и сравните понятия «геном» и «генотип».
2. Чем определяется существующая специализация клеток?
3. Какие обязательные элементы входят в состав гена эукариотической клетки?
4. Приведите примеры взаимодействия генов.
Подумайте! Выполните!
1. Митохондрии содержат ДНК, гены которой кодируют синтез многих белков, необходимых для построения и функционирования этих органоидов. Подумайте, как будут наследоваться эти внеядерные гены.
2. Вспомните известные вам особенности развития человека. На каком этапе эмбриогенеза уже возникает чёткая дифференциация клеток?
3. Создайте портфолио по теме «Исследования ДНК человека: надежды и опасения».
Работа с компьютером
Обратитесь к электронному приложению. Изучите материал и выполните задания.
Взаимодействие неаллельных генов. Известно несколько видов взаимодействия неаллельных генов.
Комплементарное взаимодействие. Явление взаимодействия нескольких неаллельных генов, приводящее к развитию нового проявления признака, отсутствующего у родителей, называют комплементарным взаимодействием. Пример наследования окраски цветка у душистого горошка, приведённый в § 28, относится как раз к этому типу взаимодействия генов. Доминантные аллели двух генов (А и В) каждый в отдельности не могут обеспечить синтез пигмента. Антоциановый пигмент, вызывающий пурпурную окраску цветка, начинает синтезироваться только в том случае, когда в генотипе присутствуют доминантные аллели обоих генов (А_В_) (рис. 83).
Рис. 83. Наследование окраски венчика у душистого горошка
Рис. 84. Наследование формы гребня у кур
Известным примером комплементарного взаимодействия является наследование формы гребня у кур (рис. 84). Существует четыре формы гребня, формирование которых определяется взаимодействием двух неаллельных генов – А и В. При наличии в генотипе доминантных аллелей только гена А (А_bb) образуется розовидный гребень, наличие доминантных аллелей второго гена В (aaB_) обусловливает образование гороховидного гребня. Если в генотипе присутствуют доминантные аллели обоих генов (А_В_), образуется ореховидный гребень, а при отсутствии доминантных аллелей (aabb) развивается простой гребень.
Эпистаз. Взаимодействие неаллельных генов, при котором ген одной аллельной пары подавляет проявление гена другой аллельной пары, называют эпистазом. Гены, которые подавляют действие других генов, называют ингибиторами или супрессорами. Гены-ингибиторы могут быть как доминантными (I), так и рецессивными (i), поэтому различают доминантный и рецессивный эпистазы.
При доминантном эпистазе один доминантный ген (I) подавляет проявление другого неаллельного доминантного гена.
Возможны два варианта расщепления по фенотипу при доминантном эпистазе.